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ABSTRACT

The IUE archive contains a wealth of information on Lyman limit absorption systems

(LLS) in quasar spectra. QSO spectra from the IUE data base have been optimally ex-

tracted, coadded, and analyzed to yield a homogeneous sample of LLS at low redshifts.

This sample comprise 36 LLS, twice the number previously analyzed low z samples. These

systems are ideal for the determination of the origin, redshift evolution, ionization, veloc-

ity dispersions and the metal abundances of absorption systems. Two of them are also

excellent targets for the determination of the primordial Deuterium to Hydrogen ratio.

1. INTRODUCTION

The study of quasar absorption systems is an inherently statistical endeavor because

a large sample of systems will include absorption from all the different types of extended

gaseous objects in the universe. The study of absorption systems complements the study

of luminous objects because the latter are condensed, while absorption systems are most

readily detected in highly extended structures which present the biggest cross-sections.

Going back in time the importance of absorption increases because a larger fraction of the

mass of the universe was in an extended gaseous form.

Key questions to be addressed are the determination of the types of objects which

cause the majority of the absorptions, and the investigation of the physical properties of

those objects. The absorbers can either be intervening material unassociated with the

quasar, or gas in the immediate vicinity of the quasar, which may have been accelerated

by the quasar itself. The primary way to distinguish between these two alternatives is the

statistical analysis of unbiased samples of systems.

Intervening systems should satisfy each of the following three constraints (Bahcall and

Peebles 1969).

1. They should have a wide-spread cosmological distribution. Except for (gravi-

tational) clusteridg near to the quasars, there should not be any excess of systems at

velocities similar to that of the quasar.

2. The number of intervening absorbers seen in a given redshift range in the spectra of

different quasars should fit a Poisson distribution. In particular, the number of absorbers

observed per unit redshift should not depend on any properties of the quasars themselves.

3. The density of systems per unit redshift should be a function of only the cosmo-

logical evolution of the absorbers, and rate of expansion of the universe.
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In contrast, material associated with the quasars might be seen predominantly at

redshifts similar to those of the quasars, and the number of Systems observed might vary

widely from quasar to quasar depending on the properties of the quasars.

To apply these tests one must construct unbiased samples of systems, as Sargent and

co-workers originally stressed. Such samples include only those spectral regions in which

one is certain that all systems with equivalent widths above a threshold could be detected.

BAL systems. Most dramatic of all systems are the broad absorption line (BAL)

systems which have strong lines of highly ionized species. They occur in about 5% of

quasars and are interpreted as gas accelerated away from the quasars (Turnshek 1987).

Extensive existing data show that nearly all systems with narrow lines (_< 100 kms-l)

are dominated by one of four different spectral features.

Ly-a systems. Sargent et a/. (1980) showed that these systems are intervening.

Later work revealed that they evolve rapidly, and that there is a significant lack of systems

at zabs -_ Zem (Carswell eta/. 1982, Hunstead et a/. 1987, Tytler 1987a, Bajtllk, Duncan

and Ostriker 1988), perhaps because of the intense ionizing radiation near to the quasar.

C IV systems. Young, Sargent and Boksenberg (1982), and Sargent, Boksenberg and

Steidel (1988) have shown that most of these system are intervening. However Weymann

et al. (1979), Foltz et al. (1986), and Anderson et al. (1987) have established that the

strongest C IV absorbers are often associated with the quasars. These associated systems

seem to occur only at velocities within 5000 kms-I of the quasars.

Mg II systems. Tytler et al. (1987), Lanzetta cta/. (1987), Sargent, Steidel & Bok-

senberg (1988a), and Steidel & Sargent (1992) all find that these systems are intervening,

and that most also show C IV lines. With a few exceptions, there is no evidence for any

associated Mg II systems.

Lyman limit systems (LLS). These absorption systems which show strong Lyman

continuum absorption are the subject of this work. They are mostly metal line systems

(C IV and especially Mg II), although some 15% are those Lya systems with the largest

H I column densities. Tytler (1982), Bechtold et al. (1984) and Sargent, Steidel and

Boksenberg (1988b) all find that the Lyman limit systems iLLS) are intervening. As with

the Mg II systems, associated systems have not been found.

Published information on the properties of these systems, from the references given

above, are listed below. The density of absorption systems, denoted N(z), is the number

of systems per unit redshift. The redshift dependence is parameterised by the index _, in

the function N(z) oc (1 4- z) _ • Values given in the top part of the table are from previous

data, while the bottom part includes the new IUE results.

TABLE 1

DENSITY OF SYSTEMS

ION NUMBER of RANGE of

QUASARS REDSHIFT

NUMBER of DENSITY INDEX

SYSTEMS N(z) "y
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Previous Data Only

H I Ly-c_ 31 1.68-3.7 639 36 a 2.30 ± 0.38

C IV 55 1.30-3.4 86 2.4 _ -1.2 -t- 0.7

Mg II 103 0.16-2.1 111 1.3 _ 0.78 ± 0.42

H I LLS 150 0.25-4.5 64 1.4 a 0.68 ± 0.54

H I LLS 52 0.25-2.5 13 0.8 -

Including New Data

H ILLS 201 0.25-4.5 87 1.3 a 0.82 ± 0.30

H I LLS 103 0.25-2.5 36 1.0 -

aAtz=2.

In the absence of evolution the -_parameter would be 0.5 for qo = 0,or 1.0 forqo = 0.5.

Clearly evolution has been detected for both the Lya and the C IV systems, but not for

Mg II systems or LLS. The most interestingresultisthat the rates of evolution differby

largeamounts, clearlyshowing that the samples contain differenttypes of systems. The Ly-

a systems are normally regarded as a separate population of intergalacticclouds because

their number density is so large,they do not cluster strongly and they lack metal lines

(but see Tytler 1987a for counter arguments). However the three remaining categories

of systems are all believed to be associated with galaxies. Why then do they evolve

differently?The differentredshiftranges sampled in each case do not fullyaccount for the
differences.

2. DATA PROCESSING

The goal of this investigation was to determine the frequency of occurrence of LLS in

the IUE archival quasar spectra.

2.1. Object Selection.

A quasar must have a redshift in excess of 0.3 for the Lyman limit to occur at above

1200._ in the observed frame. All such quasars were considered. Kinney et al. (1991) have

optimally extracted 69 QSOs and Seyfert galaxies which were observed three or more times

each. These spectra were not re-extracted. In total there are 137 QSOs with Ze,n __ 0.3.

2.2 Data Processing

It is extremely important that the data be processed in a homogeneous manner which

maximizes the signal to noise ratio. When more than one spectrum exists of a given quasar,

which is often the.case, they were coadded. Extinction corrections were not applied.

Two different algorithms have been developed which lead to a dramatic increase in

the signal to noise ratio of underexposed spectra (Kinney, Bohlin and Neill 1988). Both

the routines conserve total flux which is important because we be are looking for abrupt

changes in the continuum flux.

We used procedures similar to those employed by Kinney et al. 1991: the optimal

extraction algorithms described by Kinney, Bohlin & Neill 1991. The spectra were In-

spected and an attempt was made to remove all cosmic rays, blemishes saturated regions
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and microphonic noise defects, though this could not always be done completely. The ex-

tractions and sample construction was done by Kenneth Lanzetta, Jennifer Sandoval and

David Turnshek.

2.3. Construction of an Unbiased Sample

For each spectrum we determine the range of wavelengths over which LLS with optical

depths in excess of 1.0 could be detected. Of the 137 QSOs with z >__3, only 80 had sufficient

SNR for the detection of such LLS. Of these 80 QSOs, 68 are suitable for eLLS _> 0.3617

(i.e. 912(1 + z) _> 1242 A), 11 are suitable for eLL S _> 1.1786 (i.e. 912(1 + z) _> 1987

,_), and one with low SNR is complete to zLn S _ 1.6144 (i.e. 912(1 + z) > 2384 /_). The

maximum ZLLS is equal to zero in all cases.

The sample includes 27 LLS. Seventeen of these have T > 3, and fourteen were included

in prior analyses.

3. USES OF THE IUE LLS DATA

The above steps yield an unbiased sample of LLS in the IUE spectra. The statistical

methods required to analyse these data were introduced and described by Tythr (1982),

and have subsequently been used by Bechtold et al. (1984), and Sargent, Steidel and

Boksenberg, A. (1989). These methods make maximal use of the data.

3.1. Evolution

The IUE data sample LLS over the large redshift range 0.25 to 2.5. Figure 1 shows the

redshift distribution of the density of LLS using the IUE data at z _< 2.5 and data collected

by Tytler (1982a,b), Bechtold (1984), Sargent, Steidel & Boksenberg (1989). A total of 87

systems were found towards 201 quasars. The three bins on the left of each plot show the

IUE data. The line is the function N(z) = 0'538(1 + z) °-s2 which provides an acceptable

fit to the data. The evolution index _/was determined to be 0.82 + 0.3 using the usual

maximum likelihood fit to the unbinned data. This index is indistinguishable from that

for Mg II systems (0.78-1-0.42), as is expected from the similar ionization levels of the two

types of system. We also note that the Mg II systems, which have Wr(2796) > 0.3._ have

exactly the same density at z = 2 as the LLS with r _> i, which also indicates that these

are essentially the same systems. For both types of system, the data are compatible with

no evolution for any 0 _< qo <_ 0.5 at the one sigma level.

It is clear from Figure 1 that the IUE data are absolutely essential to the determi-

nation of the evolution of the systems. Evolution is important in itself as one of the few

characteristics of the systems which can readily be determined. It is also a strong con-

straint on possible models for the systems. Systems which do not evolve by more that 50%

over some 12 Billion years, which seems to be the case for the LLS, must be highly stable

structures, or in some stable equilibrium of births and deaths.

The rate of change of time with redshift (dt/dz) is a maximum at the current epoch;

the time interval from z =0 to 1 is 64% of the age of the universe for qo = 0.5. The IUE

LLS data (z ---0.3 - 2.4) sample 51% of the age of the universe, compared to the mere 6%

(z =2.5 - 4) which is accessible at optical wavelengths.

Comparison with the evolution of other types of systems leads to a clearer understahd-

ing of their similarities and differences. Sargent, Steidel and Boksenberg (1988) suggest
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that the differences in the evolution of the Mg II ancl the C IV systems are due to the

combined effects of abundance evolution and the expansion of the universe. The LLS are

the obvious sample of absorbers with which to explore these possibilities because they are

selected without bias by metal abundance. For example, any difference in the evolution of

the Mg II systems and the LLS would probably be the result of abundance evolution. Ion-

ization changes are unlikely to be important because the LLS and most Mg II systems are

optically thick and self shielding in the Lyman continuum. On the other hand differences

between the evolution of the LLS and the Lya and the C IV systems could easily be the

result of differing ionizations.

Since the Mg II systems track the LLS, and many weak Mg II systems have large

doublet ratios, so that a reduction in Mg II column density would lead to fewer visible

systems, we conclude that the Mg II abundance in halo gas does not evolve significantly

at z__2.

3.2. Finding Low z LLS

Fifteen of the IUE LLS are at z __ 1, low enough for a direct imaging search for the

absorbing galaxy. All five at z __ 0.5 are previously known systems.

They are interesting because we can search directly for the absorbing objects in optical

images. Bergeron (1988) has applied this technique most successfully for Mg II systems,

finding galaxies in 80% of the cases examined. We will be able to apply this technique to

the IUE LLS, some of which are already known to be devoid of strong metal lines (Bechtold

1984). Do these large column density systems Lya systems also arise in galaxies, despite

their lack of metal lines? We do not yet know whether column density or metal abundance

is a better indication that a system is located in a galaxy as opposed to being a part of

the presumably intergalactic Lya cloud population.

3.3. Metal abundances

The IUE quasars include the brightest objects in which absorption systems can been found.

This makes them the ideal candidates for follow up ground-based and HST observations

to determine the physical conditions in the absorbing clouds. The LLS are also the ideal

sample for the determination of metal abundances because they are selected only on the

basis if the H I column density. Systems detected on the basis of strong lines will naturally

be biased to above average abundances. Indeed the fact that metal lines are found with

most LLS shows that abundances are not commonly very low.

The LLS sample also includes all systems with very large column densities which

show sufficient metal lines for accurate abundance determinations. Those LLS lacking

metal lines with the largest H I column densities are the best systems in which to establish

extremely low limits on metal abundances.

-3.4. Optical Depth in the Lyman Continuum

High quality optical spectra exist for many of the quasars observed by the IUE. If an

absorption systems found in the optical is associated with LLS in the IUE spectra at

the same redshift, it is optically thick in the Lyman continuum. Otherwise it must be

optically thin. This difference is believed to have a profound effect on the ionization of

the absorbing gas cloud because the systems are known to be photoionized and Lyman

continuum radiation is exceedingly important.



It has not proven possible to check whether the systems in question are actually

optically thin or thick because they must be at Zabs __ 2.2 for the Mg II line to appears

in the optical, and they are generally too faint to he observed by the IUE. However this

sample of LLS is ideally suited to construct samples of Systems which are optically thin

and thick.

3.5. The column density distribution function

The H I column densities of the LLS can be determined from the amount of residual flux

below the Lyman limit. Upper bounds on the residual flux give lower limits on the column

density of about 5 x 101Tcm -2. The column density of these systems can be determined

from the profile of the Ly-c_ line measured in high (about 1,_) resolution spectra.

It is a remarkable fact that the distribution of the column densities of a representative

sample of both Ly-a and LLS systems can be approximated as a single power law extending

over 9 orders of magnitude in the H I column density N(HI) (Tytler 1987a, Sargent, Steidel

and Boksenberg 1988). Many of the LLS have column densities similar to 10 IT which is a

particularly interesting part of the column density distribution for two reasons.

At column densities near to 10 IT the dominant type of system changes from the

presumably intergalacticLy-c_ systems to the metal linesystems which are presumably

associated with galaxies. It is most surprising that there are no conspicuous features in

the distributionat thisjunction. The IUE data on the LLS willhelp us understand this

criticaljunction because they sample redshiftsbelow 2.5 which can not be observed in

the optical. The evolutlon of the absorption systems might be detected as a change in

the column density distribution. Higher resolution observations are needed to obtain HI

column densities.

3.6. Velocity Dispersions

The LLS are selected without being biased to high velocity disper3ions which leaclto

largerlineequivalent widths. Thus they are the best sample for the determination of the

distributionof system velocity dispersions.High resolutionspectra are needed for this.

3.7. Primordial Deuterium abundances

The LLS are the only absorption systems in which one can hope determine the primordial

deuterium abundance. Column densitiesabove about 101Zcm -_ are necessary for H I to

ensure that a D/H ratio of 10-s would give a detectable D line.On the other hand the

H I column density should not exceed about 101Scm -2 or the Ly-c_ linewillbe too wide

and blend with that of D only 0.25Ato the blue. Ground based observations have so far

been unsuccessful in large part because the density of the Ly-a forestsystems isso high at

moderate and high redshifts.LLS at low z in the bright IUE quasars are the idealhunting

ground. Ideallyone would hope for an LLS in which the limitson the metal abundances

were very low, guaranteeing minimal, and hopefully no stellarprocessing.

Only two of the LLS are in QSOs which are bright enough for follow up observations

with the HST GHRS. We applied for time to observe both in 1991.

3.8. Associated systems

Associated systems with Z_bs --_ zero have been identified amongst the C IV systems, but

not in the Mg II systems or the LLS. For the sample of 204 QSOs at all z, we find no exchss

of systems at low velocities: we observe 20 systems at v __ 6000 kms -l (including 4 at
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negative velocities) where 17.1 are expected. The nominal excess of 2.9 is not significant.

Thus these is no statistically significant excess of associated systems. There could still be

a few associated systems in the sample, which might be revealed through strong C IV lines

in HST spectra.

3.9. Emission line covering factor

Smith et el. (1981) noted that the lack of LLS with Zabs --_ zero implied that the emission

linecovering factor must be lessthan about 10% . The IUE data allows us to estimate

thislimitat low z. The limit isin principlebetter than that at high z because there fewer

low z intervening systems which happen to lienear to the QSOs.

There are no known systems which must arisein the emission lineregion. From the

numbers given in §3.8,the 95% upper limiton the number of systems at v < 6000 kms -I is

28.9,which isan excess of 11.9 over the expectation of 17.1 systems. The 95% upper limit

on the emission lineregion covering factor isthen 11.9/204 = 5.8%. The corresponding

one sigma upper limit is3.6%, and the one sigma lower limit includes zero.
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